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HARD LEFSCHETZ THEOREM FOR VALUATIONS,
COMPLEX INTEGRAL GEOMETRY, AND
UNITARILY INVARIANT VALUATIONS

SEMYON ALESKER

Abstract

We obtain new general results on the structure of the space of translation
invariant continuous valuations on convex sets (a version of the hard Lef-
schetz theorem). Using these and our previous results we obtain explicit
characterization of unitarily invariant translation invariant continuous val-
uations. It implies new integral geometric formulas for real submanifolds in
Hermitian spaces generalizing the classical kinematic formulas in Euclidean
spaces due to Poincaré, Chern, Santald, and others.

0. Introduction

In this paper we obtain new results on the structure of the space
of even translation invariant continuous valuations on convex sets. In
particular we prove a version of hard Lefschetz theorem for them and
introduce certain natural duality operator which establishes an isomor-
phism between the space of such valuations on a linear space V' and on
its dual V* (with an appropriate twisting). Then we obtain an explicit
geometric classification of unitarily invariant translation invariant con-
tinuous valuations on a Hermitian space C™. This classification is used
to deduce new integral geometric formulas for real submanifolds in Her-
mitian spaces generalizing the classical kinematic formulas in Euclidean
spaces due to Poincaré, Chern, Santalé, and others.

Let us describe the results in more details. First let us remind the
definition of valuation. Let V' be a finite dimensional real vector space.
Let (V') denote the class of all convex compact subsets of V.
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64 S. ALESKER

Definition.

a) A function ¢ : (V) — C is called a valuation if for any K3, K €
KC(V') such that their union is also convex one has

(K1 U K2) = (K1) + ¢(Ka) — ¢(K1 N Ka).

b) A valuation ¢ is called continuous if it is continuous with respect
the Hausdorff metric on (V).

Remind that the Hausdorff metric dg on (V') depends on the choice
of a Euclidean metric on V and it is defined as follows: dg(A, B) =
inf{e > 0|A C (B): and B C (A).}, where (U). denotes the e-neighbor-
hood of a set U. Then IC(V') becomes a locally compact space (by the
Blaschke selection theorem).

In this paper we are interested only in translation invariant continu-
ous valuations. The space of such valuations will be denoted by Val (V).
The simplest examples of such valuations are a Lebesgue measure on V'
and the Euler characteristic x (which is equal to 1 on each convex com-
pact set). For the classical theory of valuations we refer to the surveys
[39], [40]. For a brief overview of more recent results see [3] and [4].

Definition. A valuation ¢ is called homogeneous of degree k (or
k-homogeneous) if for every convex compact set K and for every scalar
A>0

S(AK) = Ng(K).

Let us denote by Val (V') the space of translation invariant contin-
uous k-homogeneous valuations.

Theorem (McMullen [38]).

n

Val (V) = €P Val(V),
k=0

where n = dim V.

In particular note that the degree of homogeneity is an integer be-
tween 0 and n = dim V. It is known that Valy(V') is one-dimensional
and it is spanned by the Euler characteristic x, and Val, (V) is also
one-dimensional and is spanned by a Lebesgue measure [24]. The space
Val,, (V) is also denoted by | A V*| (or by Dens (V'), the space of den-
sities on V). Let us denote by Val® (V') the subspace of Val(V') of
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even valuations (a valuation ¢ is called even if ¢(—K) = ¢(K) for ev-
ery K € K(V)). Similarly one defines the subspace Val°dd(V) of odd
valuations. One has further decomposition with respect to parity:

Val (V) = Val{' (V) @ Val (44 (V),

where Val (¥ (V) is the subspace of even k-homogeneous valuations, and
Val gdd(V) is the subspace of odd k-homogeneous valuations.

Let us fix on V' a Euclidean metric, and let D denote the unit Eu-
clidean ball with respect to this metric. Let us define on the space of
translation invariant continuous valuations an operation A of mixing
with the Euclidean ball D, namely

AP)(K) = d K+eD

(A0)(K) i= | _ o(K +2D)
for any convex compact set K. Note that ¢(K + D) is a polynomial in
e > 0 by McMullen’s theorem [38]. It is easy to see that the operator
A preserves parity and decreases the degree of homogeneity by one. In
particular we have

A Val® (V) — Val§¥ (V).

To formulate our first main result we will need one more definition
from the representation theory. Let G be a Lie group. Let p be a
continuous representation of G in a Fréchet space F. A vector v € F'is
called G-smooth if the map G — F defined by g — g(v) is infinitely
differentiable. It is well-known (and easy to prove) that smooth vectors
form a linear G-invariant subspace which is dense in F'. We will denote it
by F5™. It is well-known (see e.g., [49]) that F¥™ has a natural structure
of a Fréchet space, and the representation of G in F*™ is continuous with
respect to this topology. In our situation the Fréchet space F' = Val (V)
with the topology of uniform convergence on compact subsets of K(V'),
and G = GL(V). The action of GL(V') on Val (V') is the natural one,
namely for any g € GL(V), ¢ € Val (V) one has (9(¢))(K) = ¢(g7*K).
The following result is a version of the hard Lefschetz theorem.

Theorem 1.1.1. Let n/2 < k <n. Then
A (Val§ (V)™ — (Val§y (V)™
s an isomorphism. In particular for 1 < i < 2k —n the map

AT (Val gy (V)™ — (Val g%, (V)™
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18 injective.

Our terminology is motivated by the classical hard Lefschetz theo-
rem (see e.g., [21]) about the cohomology of Kéhler manifolds. To con-
tinue this analogy note that recently we have observed [5] the natural
multiplicative structure on (Val (V'))*™ (see also [4]). More precisely this
space has natural structure of commutative associative graded algebra
(where the grading is given by the degree of homogeneity). It satisfies
a version on the Poincaré duality with respect to these multiplication
and grading.

The operator A turns out to be closely related to so called cosine
transform on real Grassmannians, and the proof of Theorem 1.1.1 is
based on the solution of the cosine transform problem by J. Bernstein
and the author [6] (some particular cases of this problem were solved
previously by Matheron [37] and Goodey, Howard, and Reeder [19]).

Our next main result establishes connection between even transla-
tion invariant continuous valuations on V and on its dual space V*.
In order to formulate it let us make an elementary remark from lin-
ear algebra. Let E C V be any k-dimensional subspace. One has the
canonical isomorphism | A" V| = | AF E|® | A"~F (V/E)|. Note also that
V/E = (E+)*. Hence we get the canonical isomorphism

‘/\k E*’ — | /\nfk (EJ_)*| ® ‘ AT V*|
Then we have:

Theorem 1.2.1. For any k = 0,1,...,n(= dim V) there exists a
natural isomorphism

D : (Val! (V)™ = (Valg' (V)™ @ | A" V7).

This isomorphism D is uniquely characterized by the following property:
let $ € ValyY(V) and let E € Gri(V); then ¢|p = D(¢)|gL under the
above identification | A\¥ E*| = | A"k (EL)*| @ | A" V¥.

The proof of this theorem uses the representation theoretical in-
terpretation of the space Val® (V') given in [2], where this space was
characterized as the unique irreducible submodule of some standard
GL(V)-module with smallest Gelfand-Kirillov dimension (of the corre-
sponding Harish-Chandra module).

Now let us discuss the translation invariant continuous valuations
invariant under some group G of linear transformations of V. This
space will be denoted by Val® (V). If G is the group of orthogonal
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transformations O(n) or special orthogonal transformations SO(n) the
corresponding space of valuations is described explicitly by the following
famous result of H. Hadwiger.

Theorem (Hadwiger, [24]). Let V be n-dimensional Euclidean
space. The intrinsic volumes Vo, Vi, ..., V, form a basis of Val SO(”)(V)
(= Val o) (V).

Let us remind the definition of the intrinsic volumes V;. Let €
be a compact (not necessarily convex) domain in a Euclidean space V
with smooth boundary 9. Let n = dim V. For any point s € 91 let
k1(s),...,kn—1(s) denote the principal curvatures at s. For 0 <i <n—1
define

1 n—1 \!
‘/;(Q) T (Tl _ i)VOIN—i(Dn—i) (n _ 1 _ ’L) \/89{1{:]1, ctt kjn—l—i}da7

where {kj,,...,kj,_, ,} denotes the (n—1—1)-th elementary symmetric
polynomial in the principal curvatures, do is the measure induced on 952
by the Euclidean metric, and D,,—; denotes the unit (n — i)-dimensional
ball. It is well-known (see e.g., [44]) that V; (uniquely) extends by con-
tinuity in the Hausdorff metric to (V). Define also V,,(£2) := vol (2).
Note that V} is proportional to the Euler characteristic y. It is well-
known that Vy, Vi, ..., V, belong to Val©™ (V). It is easy to see that
Vi is homogeneous of degree k.

Now let us describe unitarily invariant valuations on the Hermi-
tian space C". Let us denote by IU(n) the group of isometries of the
Hermitian space C™ preserving the complex structure (thus IU(n) =
C"xU(n)). Let ©AGr; denote the Grassmannian of affine complex sub-
spaces of C™ of complex dimension j. Clearly CAGrj is a homogeneous
space of IU(n) and it has a unique (up to a constant) IU(n)-invariant
measure (called Haar measure). For every nonnegative integers p and k
such that 2p < k < 2n let us introduce the following valuations:

Uy (K) = / Vi_op(K N E) - dE.
E€CAGr,_p

Then Uy, € Val " (C™).

min{k,2n—k}

Theorem 2.1.1. The valuations Uy, with 0 < p < 5

form a basis of the space Valg(n) (C™).

This result is the Hermitian generalization of the (Euclidean) Had-
wiger theorem. The proof of this theorem is highly indirect. It turns out
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to be necessary to study the GLa,(R)-module structure of the infinite
dimensional space Val® (C"). The proof of Theorem 2.1.1 uses most
of the facts known about even valuations including the solution of the
McMullen conjecture [2], cosine transform [6], the hard Lefschetz theo-
rem for valuations, and the results of Howe and Lee [26] on the K-type
structure of certain GL-modules.

Note that there are some other natural examples of valuations from
Val V(™) (C™), for instance the averaged volume of projections of a con-
vex set to all complex (or, say, Lagrangian) subspaces. Theorem 2.1.1
implies that all of them are linear combinations of Uy, with the above
range of indices k, p. We would also like to mention another interesting
example of such valuation which comes from the complex analysis. It is
so called Kazarnovskii’s pseudovolume. It was introduced and studied
by B. Kazarnovskii [30], [31] in order to write down a formula for the
number of zeros of a system of exponential sums in terms of their Newton
polytopes. His results generalize in some sense the well-known results of
D. Bernstein [7] and A. Kouchnirenko [35] on the number of zeros of a
system of polynomial equations (see also [18]). We will recall the defini-
tion of Kazarnovskii’s pseudovolume in Subsection 3.3. As a corollary of
Theorem 2.1.1 we present a new formula for Kazarnovskii’s pseudovol-
ume in integral geometric terms (Theorem 3.3.2). It also seems that the
valuation property of Kazarnovskii’s pseudovolume was not mentioned
previously in the literature.

The classification of unitarily invariant valuations is used to obtain
new integral geometric formulas in the Hermitian space C". Let us state
some of them. Let €21, {29 be compact domains with smooth boundary in
C™ such that ©2;NU(Q2) has finitely many components for all U € IU(n).
The new result is:

Theorem 3.1.1. Let 4, Qo be compact domains in C™ with piece-
wise smooth boundaries such that for every U € TU(n) the intersection
Q1 NU(Q2) has finitely many components. Then

/ V(@ N T (Q2))dU
U€elU(n)

- Z Z /i(klak?)pl7p2)Uk1,p1(Ql)ng,pg(Q2)v
k1+ko=2n p1,p2

where the inner sum runs over 0 < p; < k;/2,i = 1,2, and (k1 k2, p1,
p2) are certain uniquely defined constants depending on n, k1, ks, p1,p2
only.
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The study of the left-hand side in this formulas was started by J. Fu
[16].

Theorem 3.1.2. Let 2 be a compact domain in C™ with piecewise
smooth boundary. Let 0 < g <mn, 0<2p <k <2q. Then

[k/2]+n—q

Uy, QNE)= Yp - U e Q),
Lo, Uest@0 ) > Usan-aal8)

where the constants 7y, depend only on n, q, and p.

Let us denote by ALGr(C") the (noncompact) Grassmannian of
affine Lagrangian subspaces of C™. Clearly it is a homogeneous space
of the group IU(n) and hence has a Haar measure.

Theorem 3.1.3. Let 2 be a compact domain in C"™ with piecewise
smooth boundary. Then

[n/2]

ENQAE=S 5, U,
/.ALGr(C") ( Z P p

where B3, are certain uniquely defined constants depending on n and p
only.

Theorems 3.1.1 and 3.1.2 are analogs of general kinematic formulas
of Chern [11], [13] and Federer [15] (see also [43], especially Ch. 15,
and [34]). Further generalizations in the Euclidean case were obtained
by Cheeger, Miiller, and Schrader [10] and J. Fu [16]. For more recent
results in this direction and further references we refer to the recent
survey by Hug and Schneider [27]. For classical results in Hermitian
integral geometry we refer to [12], [20], [42]. In these papers the authors
discuss the integral geometry of complexr submanifolds. The integral
geometry of Lagrangian submanifolds also was studied (see e.g., [36]).
The integral geometry of real submanifolds in the complex projective
space CP™ was studies by H. Tasaki [47], [48] and Kang and Tasaki [28],
[29]. In these papers the authors obtain explicit Poincaré type formulas
for real submanifolds of certain specific dimensions. Their results use
in turn a general Poincaré type formula in Riemannian homogeneous
spaces due to R. Howard [25].

It would be of interest to compute the constants r(ki, ke, p1,p2),
Yp, and B, in Theorems 3.1.1, 3.1.2, and 3.1.3 explicitly. We could
not do it in general. But we were able to compute them only in the
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first nontrivial case n = 2. One of such computations is presented in
Subsection 3.2. Much more complete treatment of the integral geometric
formulas (including computation of all constants) in C2, C3, and also in
the 2- and 3-dimensional complex projective and hyperbolic spaces was
done recently by H. Park in his thesis [41].

The paper is organized as follows. In Section 1 we discuss the results
about the structure of the space of even translation invariant continu-
ous valuations. Namely in Subsection 1.1 we prove the hard Lefschetz
theorem for valuations and deduce some corollaries from it. In Sub-
section 1.2 we discuss the duality on valuations, in particular we prove
Theorem 1.2.1. In Section 2 we prove the classification of unitarily
invariant translation invariant continuous valuations. In Section 3 we
discuss the integral geometry in complex spaces. In Subsection 3.1 we
obtain the integral geometric formulas in C™. In Subsection 3.2 we
compute explicitly the constants in one of such formulas in C? (Theo-
rem 3.2.4).

Acknowledgements. We express our gratitude to J. Bernstein for
numerous useful discussions. We would also like to thank P. Biran, J.
Fu, and L. Polterovich for useful conversations.

1. Hard Lefschetz theorem and duality for valuations

Let V be an n-dimensional real vector space. In Subsection 1.1 of
this section we prove an analogue of the hard Lefschetz theorem for
translation invariant even continuous valuations. In Subsection 1.2 we
introduce the notion of a valuation dual to a given translation invariant
even continuous valuation which satisfies some additional mild technical
condition of GL(V')- smoothness (defined in the introduction). This
construction uses the representation theoretical interpretation of the
space of valuations given in [2]. The geometric examples will be given
in Proposition 2.1.7 of Section 2.

1.1 An analogue of the hard Lefschetz theorem for valu-
ations

The main result of this subsection is the following analogue of the hard
Lefschetz theorem where the operator A was defined in the introduction.

Theorem 1.1.1. Letn >k > n/2. Then A%~ : (Val{'(V))™™ —
(Val® (V)™ is an isomorphism. In particular A* : Val${' (V) —
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Val(Y (V) is injective for 1 <i < 2n — k.

The proof of this theorem uses the cosine transform on real Grass-
mannians, thus we will remind first its definition and the relevant prop-
erties. We will denote by ®BGr;(V) the Grassmannian of real j-dimensi-
onal linear subspaces in V. Assume that 1 < i < j < n —1. For two
subspaces E € BGr;(V), F € BGrj(V) let us define the cosine of the
angle between E and F:

vol;(Prp(A))

|COS(E’ F)| = VOlZ(A) Y

where A is any subset of E/ of nonzero volume, Prg denotes the orthogo-
nal projection onto F', and vol; is the i-dimensional measure induced by
the Euclidean metric. (Note that this definition does not depend on the
choice of a subset A C F). In the case ¢ > j we define the cosine of the
angle between E and F' as cosine of the angle between their orthogonal
complements:

| cos(E, F)| := | cos(E+, F1)|.

(It is easy to see that for i = j both definitions coincide.)
For any 1 <4, j < n — 1 one defines the cosine transform

Tji: C(*Gri(V)) — C(*Gry(V))

as follows:

Tah)(F)i= [ Jeos(E, F)IF(B)E,
RGr; (V)

where the integration is with respect to the Haar measure on the Grass-

mannian such that the total measure is equal to 1. Clearly the cosine

transform commutes with the action of the orthogonal group O(n), and

hence its image is an O(n)-invariant subspace of functions.

Now let us recall the imbedding Val$' (V) — C(RBGrg(V)) which
we will call the Klain imbedding. Let ¢ € Val§¥(V). For every E €
RGri(V) let us consider the restriction of ¢ to all convex compact
subsets of F. This is an even translation invariant valuation homo-
geneous of degree k. Hence, by a result due to Hadwiger [24], it is a
density on E (i.e., a Lebesgue measure). Thus it is equal to f(F) - volg,
where volg is the volume form on F defined by the metric on V, and
f(E) is a constant depending on E. Thus ¢ — f defines the map
Val¢' (V) — C(RGri(V)) which turns out to be an imbedding by a
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result due to D. Klain ([32]; this result was stated in this form in [33]
and in [1]). Let us denote this image by Ix. Moreover it was shown in
[6] that the image of the Klain imbedding coincides with the image of
the cosine transform T : C(RGri(V)) — C(RGrg(V)) (at least on
the level of GL(V')-smooth vectors).

Lemma 1.1.2. Let k > n/2. The cosine transform
T pg : C(BGry(V)) — C(BGr,_1(V))

maps Iy, to I,_y and induces isomorphism of O(n)-smooth vectors of
these subspaces.

Proof. Tt is well-known that for admissible GL(V')-modules of finite
length the subspaces of GL(V)-smooth and O(n)-smooth vectors coin-
cide (more generally, GL(V') can be replaced by any real reductive group
G, and O(n) can be replaced by a maximal compact subgroup of G).
First let us prove that I, and I,,_; have the same decomposition under
the action of the orthogonal group O(n). Indeed the correspondence
E +— E* induces an isomorphism S : C(RGry,(V)) — C(RGr,_(V))
commuting with the action of O(n). Moreover we have the following
relation between the cosine transforms:

Tt = STpS ™"

Hence it follows that S((I)*™) = (I,—)™™ (it is immediate on the level
of O(n)-finite vectors; to deduce it for O(n)-smooth vectors one should
use the Casselman-Wallach theorem [9] as it is done in [6]).

Next it is well-known (see e.g., [6], Lemma 1.7) that the cosine
transform 7),_j j can be written (up to a nonzero normalizing constant
which we ignore) as a composition Ty—km—k © Rp—kk, where Ry,_p . :
C(RGrp(V)) — C(RGr,_x(V)) is the Radon transform. It was shown
in [17] that

Rypp : O (RGry(V)) — C®(RGry_i(V))

is an isomorphism. We claim that R,_j ((15)*™) = (In—x)™. To see
this remind that the quasiregular representation of O(n) in the space of
functions on the Grassmannians is multiplicity free (since the Grassman-
nians are symmetric spaces). Hence it follows that two O(n)-invariant
closed subspaces of C>°(RGr,,_;(V)) have the same O(n)-finite vectors
if and only if these subspaces have the same decomposition under the
action of O(n) (in the abstract sense). Hence R,,_j, 1(I)) and I,,_j have
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the same O(n)-finite vectors. The coincidence of O(n)-smooth vectors
follows again from the Casselman-Wallach theorem [9] and the fact that
the Radon transform can be rewritten as an intertwining operator of
admissible GL(V)-modules of finite length (see [17]).

Since T, _j n— is selfadjoint its restriction to I,,—j has trivial kernel
and dense image. But the key observation of [6] was that Tj,_j &
can be rewritten as an intertwining operator of certain GL(V')-modules.
This and the Casselman-Wallach theorem [9] imply that

Tn—k,n—k((In—k)sm) = (In—k)sm-
Hence T, 1 ((15)™) = (Ln—k)™™. q.e.d.
Now let us prove Theorem 1.1.1.

Proof of Theorem 1.1.1. Since the image of GL(V)-smooth con-
tinuous k-homogeneous valuations in C(RGrg(V)) coincides with the
image of the cosine transform on GL(V')-smooth functions, then every
GL(V)-smooth valuation ¢ € Val§' (V') can be represented in the form

H(K) = / £ (E)voly (Prp(K))dE,
RGrp(V)

where f is a smooth function on ®Gry(V), K is an arbitrary convex
compact set, Prg denotes the orthogonal projection onto E, and the
integration is with respect to the Haar measure on the Grassmannian.
Moreover for every smooth function f, the expression defined by this
formula is a valuation from (Val§¥(V'))s™. For a given valuation ¢ the
function f is not defined uniquely. But we can choose f € I, i.e., in
the image of the cosine transform; then it will be defined uniquely. So
we will assume that f € I;,. Let us apply A2~ to it. Then it is easy
to see that

(W) E) = [ EWPrp())dE,
RGrg (V)

where ¢ is a nonzero normalizing constant, and V,,_;(Prg(K)) denotes
the (n — k)-th intrinsic volume of Prg(K) inside F, i.e., it is the mixed
volume of Prg(K) taken n — k times with the unit ball of E taken
2k —n times. The image ¢ of A2* "¢ in functions on the Grassmannian
C(RGr,_x(V)) can be described as follows. It is easy to see that for
every subspace F' € BGr, (V)

g(F)=¢ - AG . F(E)| cos(F, E)|dE,
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where ¢’ is a nonzero normalizing constant. Namely ¢ is equal (up to a
normalization) to the cosine transform 7}, ,(f) of f. By Lemma 1.1.2
T~k induces the isomorphism between GL(V')-smooth vectors of Ij,
and of I, ;. This proves Theorem 1.1.1. q.e.d.

For a subgroup G C GL(V) let us denote by Val{(V) the space of
translation invariant G-invariant k-homogeneous continuous valuations.

Let hy, := dim Val (V).

Corollary 1.1.3. Let G be a compact subgroup of the orthogo-
nal group which acts transitively on the unit sphere and contains the
operator —Id. Then Val,?(V) is a finite dimensional space, and for
n/2<k<n

A Val §(V) — Val g (V)

is an isomorphism. Consequently the numbers h; satisfy the Lefschetz
mequalities:

hi < hiyq fori<n/2, and h; = hy—; fori=0,...,n.

Proof. The finite dimensionality of Val ¢ (V) was proved in [1]. Let
us show that this implies that all vectors from Val (V) are O(n)-finite
(in particular GL(V')-smooth). Indeed let Z be the minimal closed O(n)-
invariant subspace of the space Val (V') containing Val ¢ (V). The space
Z is decomposed under the action of O(n) into the direct sum of irre-
ducible components, and each component enters with finite multiplicity
(since the space of translation invariant continuous valuations of the
given degree of homogeneity and parity can be realized as a subquotient
of a representation of GL(V') induced from a character of a parabolic
subgroup, see Section 2 in [2]). Thus let Z = &;p; be this decom-
position. We have a continuous projection 7 : Val (V) — Val ¢ (V)
defined by m(¢) = [ . 9(¢)dg. Clearly Im(r) = Val ¢ (V) = (Z)¢. But
(2)¢ = @i(p;)¢. Since Val{ (V) is finite dimensional, (p;)¢ = 0 for all
but finitely many 4’s. In other words there is a finite set of indices A such
that Val¢(V) C @;cap;. Thus all elements of Val{'(V) are O(n)-finite.

Next obviously A(Val{(V)) C Val{ (V). The rest follows from
Theorem 1.1.1. q.e.d.

1.2 Duality on valuations

Let V be an n-dimensional real vector space. Let us denote by V* its
dual space. Let us denote by | A" V*| the (one-dimensional) space of
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complex-valued Lebesgue measures on V. Let us consider the space
Val{V(V*) @ | A™ V*| of translation invariant even continuous k-homo-
geneous valuations on V* with values in | A" V*|. Note that on both
spaces we have the natural (continuous) representation of the group
GL(V).

Before we state the main result of this subsection let us make a
remark. For any subspace E' € Gry(V') consider the short exact sequence
0 — F — V — V/E — 0. From this sequence one gets the
canonical isomorphism | A" V| = | AF E|® | A"~* (V/E)|. Note also that
V/E = (E+)*. Hence we get the canonical isomorphism

|/\k E*| — | /\n—k (EL)*| ® ’ NG V*‘

The main result of this subsection is:

Theorem 1.2.1. For any k = 0,1,...,n there exists a natural
isomorphism

D : (Val ¥ (V)™ = (Val 5’ (V)™ @ [ A V.

This isomorphism I is defined uniquely by the following property: let
¢ € (Val'(V))*™ and let E € Gry(V); then ¢|p = D(¢)|pr under the
above identification | \F E*| = | A" F (EL)*| @ | A" V*|.

Proof. First let us rewrite the Klain imbedding we have discussed
in Subsection 1.1 of the space of even valuations Val{¥ (V) to functions
on the Grassmannian in the notation which does not use any Euclidean
structure. Instead of functions on the Grassmannian we have to con-
sider sections of certain line bundle Lj over the Grassmannian ®Gry (V).
The fiber of Ly over a subspace £ € RGry (V) is the (one-dimensional)
space | AF E*| of complex valued Lebesgue measures on E. Clearly Ly, is
naturally GL(V)-equivariant. Let us denote by C(®Gry, Ly) the space
of continuous sections of L;. The map we have described in Subsec-
tion 1.1 can be rewritten as follows. Fix a valuation ¢ € Val§" (V). For
any E € BGry (V) let us consider the restriction of ¢ to E. As previously,
since this restriction ¢|g has maximal degree of homogeneity (equal to k)
by Hadwiger’s theorem [24] ¢|g is a Lebesgue measure on E. Thus ¢ de-
fines a continuous section of L. As we have mentioned, the constructed
map is injective. One of the main results of [2] says that the image of
Val¢' (V) in C(RGry(V), L) under this map is the unique “small” ir-
reducible GL(V')-submodule (Theorem 1.3 combined with Theorem 3.1
in [2]) . Let us give some comments what does it mean “small”. First
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replace all GL(V)-modules by their Harish-Chandra modules which are
purely algebraic objects. For each Harish-Chandra module one defines
an associated variety (or Bernstein’s variety) which is an algebraic sub-
variety of the Lie algebra gl,,(C), where n = dim(V’). For details we
refer to [8]. When we say that a given irreducible submodule A of a
module B is “small” it means that the dimensions of the associated
varieties of all other irreducible subquotients of B are strictly greater
than that of A. Note also that the dimension of the associated vari-
ety of A is equal to the Gelfand-Kirillov dimension of the underlying
Harish-Chandra module.

Now let us continue constructing the isomorphism D). Let us con-
sider the line bundle M}, over ®BGr, 1 (V*) the fiber of which over any
F € BGr,,_1(V*) is equal to | A" % F*| @ | A" V*| (note that | A"~F ¥
is identified with the space of Lebesgue measures on F'). As previ-
ously, Val¢" . (V*) ® | A" V*| can be realized as the only “small” irre-
ducible submodule of C(RGr,_(V*), M) (indeed these spaces differ
from the previous two only by the twist by | A” V*|). Hence it is suf-
ficient to present the natural isomorphism between C*°(RGry,(V), L)
and C®(RGr,,_1(V*), M},) where C™ denotes the space of C*-sections
of the bundles. Let us do it. Let E € BGry (V). As previously, we have
the canonical isomorphism

‘/\kz E*’ _ ’ /\n—k (EJ_)*‘ ® ‘ AT V*‘

The correspondence E — E and the last identification give the de-
sired isomorphism. q.e.d.

Now let us assume that V is a Euclidean space, i.e., on V we are
given a positive definite quadratic form. This gives us the identification
of V with its dual space V*, and the identification of the space | A” V*|
of Lebesgue measures on V with the complex line C (such that 1 €
C corresponds to the Lebesgue measure on V' which is equal to 1 on
the unit cube). Also for any subspace E let us denote by volg the
Lebesgue measure on E which is equal to 1 on the unit cube. Under
these identifications we get

D: (Valy' (V)™ —(Val; . (V))*™.

For this operator we have the following result which can be easily de-
duced from the last theorem.
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Theorem 1.2.2. Let V be an n-dimensional Euclidean space. Then
forany k=0,1,...,n

D (Val 3" (V)™ —(Val 72, (V)™

is an isomorphism and D? = Id. This operator D is defined uniquely
by the following property: let ¢ € Valy¥(V) and let E € Gri(V); if
¢|lg = f(E)-volg then Do|pL = f(E)volgi. Also D commutes with the
action of O(n).

Example. Let y denote the Euler characteristic on a Euclidean
space V. Clearly x € Valo(V'). Then D(x) = voly, and D(voly) = x.

2. Unitarily invariant valuations

In this section we will describe unitarily invariant translation invari-
ant continuous valuations on convex compact subsets of C" by writing
down explicitly a basis in this space. Let k, [ be integers such that
0 <k <2nandk/2<I<mn. Let us define a valuation

Cr(K) = / Vi(Prp(K))dF,

CGry

where the integration is with respect to the Haar measure on the com-
plex Grassmannian of complex [-dimensional subspaces in C", Prg de-
notes the orthogonal projection onto F, and Vj(Prp(K)) denotes the
k-th intrinsic volume of Prp(K) inside F', namely it is the mixed volume
of Prp(K) taken k times with the unit Euclidean ball in F' taken 2] — k
times. Clearly Cj; € Vallg(n)((C”). Note that for [ = n we get the usual
intrinsic volumes. For k& = 0 we get the Euler characteristic, and for
k =2n, l =n we get the Lebesgue measure. Our next main result is:

Theorem 2.1.1. Let k be an integer, 0 < k < 2n. The dimension
of the space Valg(n) (C™) is equal to 1+ min{[k/2], [(2n — k)/2]}. The
valuations Cy; with w <1l <mn, form a basis of Valg(n)((C”).

Remark. Later on in this section we will present another basis
in the space of unitarily invariant valuations. This basis will be more
convenient for the applications in integral geometry and for non-convex
sets. In fact the connection between these two bases is not quite trivial
and leads to new integral geometric formulas. This material will be
discussed in more detail in Section 3.
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Proof. The dimension of Valg(n) (C™) was computed in [2]. Hence

it remains to show that the valuations C}; with w <1<
n are linearly independent. First of all it is clear that Cy; = c -
A(Ck41,41), where A is the operator from the hard Lefschetz theorem
(Theorem 1.1.1), and ¢ is a nonzero constant depending on n, k, [ only.
Hence by the hard Lefschetz theorem for unitarily invariant valuations
(Corollary 1.1.3) the statement is reduced to the case k > n. Let us
prove this case. We will prove the statement by induction in 2n — k. If
2n — k = 0 then the result is clear since by [24] any translation invari-
ant continuous N-homogeneous valuation on RY is a Lebesgue measure.
Now assume that n < k < 2n, and the theorem is true for valuations
homogeneous of degree > k. If k is odd then the induction assumption,
Corollary 1.1.3, and the computation of the dimension of unitarily in-
variant k-homogeneous valuations imply the result. Hence let us assume
that k is even. Again using Corollary 1.1.3 it is sufficient to check that
Cp.k/2 can not be presented as a linear combination of valuations Cj
with 1 > £,

In order to prove it, we will show that the special orthogonal group
SO(2n) acts differently on Cj, /o and on Cy; with [ > g To formulate
this more precisely let us introduce some notation. First recall that
the set of highest weights of SO(2n) is parameterized by sequences of
integers f1, ..., n—1, fn, such that pg > -+ > pp_1 > |upl. For 1 <
I < n let us denote by A(l) the subset of highest weights of SO(2n)
such that all p;’s are even and if [ < n satisfy in addition the following
condition: p; = 0 for j > [.

The following result was proved in [2], Proposition 6.3.

Lemma 2.1.2. The natural representation of SO(2n) in the space
Val{V(C"™) is multiplicity free and is isomorphic to a direct sum of ir-
reducible components with highest weights (1, pio, ..., tn) € A(min(k,
2n — k)) such that |us| < 2.

Note that the explicit description of the K-type structure was heav-
ily based on the results of Howe and Lee [26].

The next result is well-known (see e.g., [46], §8).

Lemma 2.1.3. In every irreducible representation of SO(2n) the
subspace of U(n)-invariant vectors is at most 1-dimensional. This sub-
space is 1-dimensional if and only if the highest weight of the irreducible
representation of SO(2n) is of the form (1, ..., uy) where:
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(i) if n is even then
f1 = f2 > p3 = g > 0 > 1 = fhy > 0;
(ii) if n is odd then
M1 = o 2 [3 = flg 2 0 2 fp—2 = Hp—1 = Hn = 0.

The following lemma and Corollary 1.1.3 obviously imply Theo-
rem 2.1.1.

Lemma 2.1.4. Let k be even, n < k < 2n.

(i) The valuations Ci; with | > k/2 belong to the sum of the repre-
sentations with highest weights p € A(2n —k —1).

(ii) The valuation Cy /o does not belong to the above sum.

Proof. First let us prove Part (i) of the lemma. As we have men-
tioned earlier Cy; = ¢ - A(Cyy1y) if I > k/2. Since the operator A
commutes with the action of SO(2n) on valuations then it is sufficient
to check that Cj1; belongs to the sum of irreducible components with
highest weights from A(2n — k — 1). As it was mentioned in Section 1
of this paper the space Val z‘_’H((C”) can be imbedded into the space
of continuous functions C(RGrgi19,). But it is well-known that all
irreducible representations of SO(2n) which appear in the last space be-
long to A(2n — k — 1) (see e.g., [46] §8 for the general case of compact
symmetric spaces). This proves Part (i) of the lemma.

Let us prove Part (ii) which is somewhat more computational. We
will show that the image of C} /2 in C(RGrg 2,) is not orthogonal to
the irreducible subspace in C(RGry, 2,,) with highest weight ( 2,2,...,2,

——

2n—k times
0,...,0). Clearly this will finish the proof of Lemma 2.1.4, and hence
the proof of Theorem 2.1.1.

From the definition of C} /o we immediately see that its image in
C(RGrkgn) is the function f such that

fB)=c [ leos(E,F)F.
cGrk/2,n

where ¢ is a nonzero normalizing constant. In other words f is pro-
portional to the cosine transform of the §-function of the submanifold
CGI'k/gm C RGry 2,. We will denote it by dc,.
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Lemma 2.1.5. Let k > n be even. Then dcg, is not orthogonal to
the irreducible subspace in C(RGryo,) with highest weight

(2,2,...,2,0,...,0).
~———
2n—k times

First let us deduce our statement from this lemma. The cosine trans-
form commutes with the action of SO(2n) on C'(RGry 2,,). Hence by the
Schur lemma it acts on each irreducible subspace as a multiplication by
a scalar. Hence an irreducible subspace is contained in the image of
the cosine transform if and only if the cosine transform on it does not
vanish. However by Lemma 2.1.2 the irreducible subspace with the
highest weight vector ( 2,2,...,2,0,...,0) is contained in the image

——

2n—k times
of Valgy  in C (RGern), and this image coincides with the image of
the cosine transform by Theorem 1.1.3 of [6]. Thus it remains to prove
Lemma 2.1.5 to finish the proof of Theorem 2.1.1.

Proof of Lemma 2.1.5. First observe that the statement of the
lemma is purely representation theoretical. So replacing each subspace
by its orthogonal complement we may and will assume that £ < n
(oppositely to our previous assumption on k). Under this assumption
it is easier to write down explicit formulas. It is sufficient to prove
that dcg, is not orthogonal to the highest weight vector in the relevant
irreducible subspace. This statement will be proven by a computation
involving explicit form of the highest weight vector. First we will write
it down following [45] (see also [22]).

Let e; ; denote (2n x 2n)-matrix which has zeros at all but one place
(,7) where it has 1. Let us fix a Cartan subalgebra of so(2n) spanned
by {C;}!_, where

Ci =e2i—12i —€22i-1,t=1,...,n.

For any subspace E € RGrk,gn let us choose an orthonormal basis
Xt ..., X% and let us write its coordinates in the standard basis in
columns of 2n x k-matrix:

Let X; denote the j-th row of this matrix. For [ < n let A(l) be [ x k-
matrix whose j-th row is Xo;_1++v/—1X5;, j = 1,...,l. The next lemma
was proved in [45], Theorem 5 (see also [22]).
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Lemma 2.1.6. Let k < n. Let (2mq,2ma,...,2my,0,...,0) be the
highest weight of SO(2n) with my > mg > -+ > my, > 0. The irreducible
subspace of C(RGern) with this highest weight has the highest weight
vector of the form

Fonmy = det[A(1) - A(1)F]™7™2 . det[A(2) - A(2)!]m2™= .
e det[A(k) . A(k)t]mk,

Recall that we are interested in the highest weight (2,2,...,2,
——

k times
0,...,0). Hence the highest weight vector F' € C(RGry ,,) has the form:

F o= det[A(k) - A()").

Let us denote for brevity m := k/2 (recall that m is an integer). We
have to show that

/ F(M)dM # 0.
MeCGry,n

In fact we will show that the function F' is nonnegative on CGrmm and
is not identically zero.

Let us choose in our hermitian space C" an orthonormal hermitian
basis e, ..., e,. Then in the realization R?" of this space we will choose
the basis
(+)
e1,€2,€3,...,e: vV —1ler, —v—1les, vV —1les, ..., —v/—1les, other vectors.

Fix any F € CGrm,n. Let us choose in F an orthonormal hermitian
basis &1, ...,&n. Then

n

& = Zzgej = Z(Rez{ ej + Ing - (V—1ej)),
j=1

J=1

with 27 € C. Then the vectors &1,...,&m, vV—1&1, ..., V/—1&, form a

real basis of E. Let us write the coordinates of these vectors with
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respect to the basis (%) in columns of the following matrix:

Rezi ... Rez), —Imzf ... —Imz}
Rez? ... Rez —Imz? ... —Imz2
Rezi~! Rezf1 | —Tmz! —Tmzk-t
Rez¥ Rezk, —Imzf —Imzk,

| Tmz Imz}, Rezi Rez},
—Imz? —Imz2, | —Rez? —Rez2,

mz; mz,,~ ez] €%y
TmzH~! ImzF~! | Rezf! Rezk1
—Imzf ~ImzF | —Rezf —Rezk,

Now let us write down the (k x k)-matrix A(k). Recall that the j-th
row of it is obtained by adding to (25 — 1)-th row of the above matrix

i = +/—1 times the (2j)-th row of it. Then we obtain that A(k) is equal
to

Rezi +iRez? ... Rez}, + iRez2, ‘ —Imz} —iImz? ... —Imz}, —ilmz2,
Rezf*1 +iRezf ... RezF ! 4+ iRezk, ‘ —Imzf*1 —iImzF ... —ImzE ! — iImzk,
T ; T - T - T I
Imzi —iImz? ... Imzl —ilmz2, ‘ Rezi —iRez? ... Rez., —iRez2,
k—1 - -1 . k—1 . —1 . X
Imzi"" — ilmz¥ ... ImzF7' — iImzF, ‘ Rez{™" — iRezf ... RezF ! —iRez®

Let us denote by A the (m x m)-sub-matrix of the above matrix which
stays in the upper left part of it, and by B the m x m-sub-matrix which
stays in the lower left part of it. Then it is easy to see that

A(k):[é _jf]

Then the function F' is equal
det[A(k) - A(k)!] = det[A(k)]?.

Let us show that det[A(k)] € R. Indeed

det[A(k)] = det { T A

det<[(1) _Ong _sz(l) _01D:det[A(k)].

A —B]:
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It remains to show that F' # 0. Take Fy := spanc{ei,es,es,...,ex_1}.
Then F(Ep) = 1. q.e.d.

Now we will present another basis in the space of unitarily invariant
valuations. As it was mentioned above this basis is more convenient to
obtain integral geometric formulas for non-convex sets (see Section 3).
Let RAGrk’gn denote the Grassmannian of affine real k-dimensional
subspaces in C" ~ R?". Let CAGrkm denote the Grassmannian of
affine complex k-dimensional subspaces in C™. Note that RAGrk’gn
and CAGrkvn have natural Haar measures which are unique up to a
constant. For every nonnegative integers p and k such that 2p < k < 2n
let us introduce the following valuations:

Upp(K) = / Vioop(K N E) - dE.
E€CAGr,—pn

Clearly Uy, € Val P "™ (C").

Proposition 2.1.7. For any nonnegative integers k, p satisfying
2p < k <n one has

Uk,p = Cn,k,p * D(CQn—k,n—p)a

where cp 1. p s a nonzero normalizing constant depending on n, k and p
only. Hence the valuations Uy, with 0 < p < w form a basis
of the space Valg(n)((cn).

Proof. Clearly the second statement immediately follows from the
first one and Theorem 2.1.1. First we can rewrite the definition of Uy,
as follows:

Uk p(K) :/ dF-/ dr - Vi_op(K N (z + F1L)),
FeCGrpn el

where F- denotes the orthogonal complement of F. Let us compute the
image of Uy, ,, in the space C (RGrk’n) under the imbedding described in
Section 1. Fix any L € RGrk,n. Let Dy, denote the unit Euclidean ball
inside L. Then by a straightforward elementary computation one can
easily see that for K = Dy, the inner integral in the last formula is equal
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to ¢ |cos(L, F')|, where ¢ is a normalizing constant. Hence

(1) Ukp(Dr) =c- / dF - |cos(L, F)|
FeCGrp,n

:c~/ dF - | cos(L*, F1)|
FeCGrpn

—c-/ dE - |cos(L*, E)).
E€CGrn—pn
It is easy to see that for any M € RGrkgn, and for 2k <

2) CLiDa) =< [ 4B |eos(M, B,

EECGI‘l’n
where ¢ is a normalizing constant. Clearly (1) and (2) imply the theo-
rem. q.e.d.

3. Integral geometry in C"

Using the classification of unitarily invariant valuations obtained in
the previous section, we will establish new integral geometric formulas
for real submanifolds in C”. Note that these formulas will be valid not
only for convex domains, but for arbitrary piecewise smooth submani-
folds of C™ with corners.

The method to obtain the result for non-convex sets using the con-
vex case is as follows. First one should guess the correct formula for the
general case. Next one can approximate nicely piecewise smooth set by
polyhedral sets. The last set can be presented as a finite union of convex
polytopes. For each convex polytope and for each finite intersection of
them we can apply the formulas for the convex case. The final result
follows by the inclusion-exclusion principle. In Subsection 3.1 we obtain
new integral geometric formulas in C"”. In Subsection 3.2 we compute
explicitly the constants in one of these formulas in the particular case
n = 2. In Subsection 3.3 we discuss another example of unitarily invari-
ant valuation, Kazarnovskii’s pseudovolume.

3.1 General results

Let us denote by IU(n) the group of all isometries of C™ preserving the
complex structure. (Clearly this group is isomorphic to the semidirect
product C" x U(n).)
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Note also that the intrinsic volumes V; in a Euclidean space RV
can be defined not only for convex compact domains but also for com-
pact domains with piecewise smooth boundary (even more generally,
for compact piecewise smooth submanifolds with corners). For instance
for a domain 2 with smooth boundary they can be defined as follows:
Vi(Q) := % My_1-,(0), where for any hypersurface

M, (%) := <N; 1>_1/E{ki1,...,kiT}da,

where {k;,,...,k;. } denotes the r-th elementary symmetric polynomial
in the principal curvatures k;,,...,k;., and do is the measure induced
by the Riemannian metric.

Then we can define the expressions Uy ,(2) for 0 < 2p < k < 2n
(for convex compact sets they were defined in Section 2). The correct
generalization is as follows:

Uk,p(Q) = /EGCAG Vk,QP(Q N E) -dFE,
I'n—p,n

where we use the above definition of Vj,_9,(€2).

Remark. In fact the expressions Uy, can be defined also for com-
pact piecewise smooth submanifolds of C™ with corners.

Theorem 3.1.1. Let 0y, Qo be compact domains in C" with piece-
wise smooth boundaries such that for every U € IU(n) the intersection
Q. NU(Q2) has finitely many components. Then

/ X(Ql N U(QQ))dU
UelU(n)

= > > k1, k2, p1,p2) Uy gy (1) Uky o (2),
k1+ko=2n p1,p2

where the inner sum runs over 0 < p; < w,z = 1,2, and
k(k1, k2, p1,p2) are certain constants depending on n, ki, ks, p1,p2 only.

Theorem 3.1.2. Let Q) be a compact domain in C™ with piecewise
smooth boundary. Let 0 < g <mn,0<2p <k <2q. Then

[k/2l4n—q

Uk, (QQE) = Yp - U n— (Q)a
/EGCAGrq,n Y ; Pk

where the constants 7y, depend only on n, q, and p.
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Let us denote by ALGr,, the (noncompact) Grassmannian of affine
Lagrangian subspaces of C". Clearly it is a homogeneous space of the
group IU(n).

Theorem 3.1.3. Let ) be a compact domain in C™ with piecewise
smooth boundary. Then

[n/2]
/ X(ENQ)AE =Y B, Unp(Q),
ALGr(Cn) =0

where 3, are certain constants depending on n and p only.

Remarks.

1)

3.2

Theorems 3.1.1 and 3.1.2 are analogs of general kinematic formu-
las of Poincaré, Chern [11], [13] and Federer [15] (see also [43],
especially Ch. 15).

These results can be formulated and proved not only for domains
but also for piecewise smooth compact submanifolds in C™ with
corners. To do it, consider an e-neighborhood of this subman-
ifold for small € > 0. Then apply the above formulas to this
domain. Both sides depend polynomially on €. Comparing the
lowest degree terms we get the mentioned generalizations. We do
not reproduce here the explicit computations.

It would be of interest to compute the constants k(ki, ke, p1,p2)
and 3, in Theorems 3.1.1, 3.1.2, and 3.1.3 explicitly. We could
not do it in general. But we compute them in the first nontrivial
case n = 2 for Theorem 3.1.3 in the next subsection.

Integral geometry in C?

In this subsection we will compute explicitly the constants in one of
the integral geometric formulas discussed in the previous subsection in
the particular case of C2. In order to do these computations we first
recall the classical presentations for the orthogonal group SO(4) (more
precisely for its universal covering Spin(4)) and for the Grassmannian
of oriented 2-planes in R* which we will denote by RGr;’ 4

Let us denote the standard complex structure on C? by i. Let us
identify C? with the quaternionic space H with the usual anti-commut-
ing complex structures ¢, j, and k = ¢5. Then clearly H = C & jC.
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Recall that the group of quaternions with norm equal to 1 acts by left
multiplication on H = C? and thus is identified with the group SU(2).
Also we have the isomorphism

® : SU(2) x SU(2)/{£Id}==SO(4)

defined by
((q1,q2))(x) = qogy ',

where g1, g2 are norm one quaternions. Hence we can and will iden-
tify the group Spin(4) with SU(2) x SU(2). Let Ey € RGr{4 be the
spang{1,i} with standard orientation coming from the complex struc-
ture. Clearly the stabilizer of Ey in Spin(4) = SU(2) x SU(2) is equal
to T x T where

T ={z€eCllz| =1} =U(1) Cc SU(2).

Hence we have the following presentation of the Grassmannian of real
oriented 2-planes in R* :

RGrf, = SU(2)/T x SU(2)/T.

However SU(2)/T ~ CP!, where CP! is (as usual) the complex projec-
tive line. For our computations it will be convenient to identify CP!
with the 2-dimensional sphere of radius 1/2. Moreover it will be con-
venient to consider this sphere S? in the standard coordinate space R?
with the center (1/2,0,0). Moreover Ej € RGr;4 = 52 x 8?2 will cor-
respond to the point ((1,0,0),(1,0,0)). The following lemma can be
proved by a straightforward computation.

Lemma 3.2.1. Let E = (t,t3) € S? x §? = RGr;A. Let t; =
(i i, 2i), © = 1,2. Then |cos(E, Ey)| = |z1 + z2 — 1].
For C? Theorem 2.1.1 says:

Proposition 3.2.2. For 0 < k <4,k # 2, the space Val 2(2) (C?) is
spanned by Vi; Valg@) (C?) is spanned by Vo and by ¢, where ¢p(K) =
fEECPl VOIQ(PI‘&K)CZ&.

Recall that the total measure of CP! is chosen to be equal to one.

Now let us describe the image of the valuation ¢ in C' (RGr;A). Let us
denote this image by f.
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Lemma 3.2.3. For every E = (t1,t2) € S? x §? = R(}r;4 with
ti = (':U’ivyiazi)’ 1= 172

F(E) = volyDs - ((:@ - ;)2 + i) :

where Dy denotes the unit 2-dimensional Euclidean disk.

This lemma follows immediately from Lemma 3.2.1 and the fact that
the set of complex lines in C? is SU(2)-orbit of Ej.

Let us denote by LGr, the Grassmannian of Lagrangian subspaces
in C". Let us define a valuation 1 € Valg(g) (C?) as follows:

P(K) :/FGLG vola(Prp(K))dF,

where dF is the Haar measure on LGry normalized by 1. The main
result of this subsection is:

Theorem 3.2.4.

™

+ 2 = Va.
Proof. Let
~ 1 1 ~ 1 1
¢ T V012D2¢ - ;gb’ w T V012D2¢ N ;d)

Let us denote by g the image of {/; in C’(RGr;A), and by fthe image of
¢ in C(RGr;’ZL). By Lemma 3.2.3

(x2) fiE) = (2 - ;) .

for every E = (t1,t2) € S? x §? = R(}r;4 with t; = (zi,y4,2i), 1 = 1,2.
Now let us describe g. Thus fis considered as a function on the second
copy of S%2. Let E; = span{l,j} € LGrs. It is easy to see that F; =
Uo(Ep), where Uy € SO(4) is defined by

1+k
Up(x) = :

. 1+k
V2 V2
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for every x € H = R*. Then
B = [ JeostF.B)aF
FeLGrg
= / |cos(U(En), E)|dU
UeU(2)
= / | cos(UUy(Ey), E)|dU
Ueu(2)
= / | cos(Eo, Uy 'U(E))|dU.
Ueu(2)

However U(2) = (SU(2) x U(1))/{%£1}, where (¢, A) € SU(2) x U(1) acts
onz € Hby z + g-z-A"'. In the formulas below we will write the
action of A € U(1) on F € RGr{4 from the right: A\(E) = E-A"! In
this notation the last integral can be rewritten as

1-— 1
/ dV/ dA-cos(Eg,kV-E-A_l-M)’
Vesu(2) AEU(1)

V2 V2
1
:/ dV/ d\ - |cos (EO,V-E-A—IH"N
Vesu(2) AEU(1)
. 14k
= d)\-f<E-)\‘1->.
/)\EU(l) V2

V2
By (%%) we can write f as

where h(E) = (z2—3)?— 5. The function h on the sphere S? (of radius

2
[ n=o
S2

1/2) has the property
-~ 1+k 1
gE:/ d)\-h<E-)\‘1->+.
(&) AEU(1) V2 3

It is easy to see that

We have
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—1/2 <y9 < 1/2. Clearly h; is a polynomial of second degree on sphere
S2 such that fsg h1 = 0. Hence fAGU(l) hi(E-A~1)d) also satisfies these
properties, and moreover it is U(1)-invariant. But such a polynomial is
unique up to proportionality, hence f)\eU(l) hi(E - A1) d\ = c- h(E),
where ¢ is a constant. Let us compute it. If subspace FE is such that
x9 =1/2 then h(F) = —1/12. But

1 [ cos’¢ 1
hi(E-A"Hdy=— d¢< —>:124.
//\EU(I) 1 ) 27 Jo 4 12 /

Hence ¢ = _,1/2' Thus g(E) = —@4—% = —%(f(E)—%)%—% = %—@
Hence ¢ + 29 = k - Vo, where k is a normalizing constant such that for
the unit 2-dimensional Euclidean disk Do, k- Va(Ds) = 1. Thus we get
that ¢ + 2¢ = ﬁVQ. q.e.d.

3.3 Kazarnovskii’s pseudovolume

In this subsection we discuss another example of unitarily invariant
translation invariant continuous valuation which has rather different
origin, namely it comes from complex analysis. We discuss so called
Kazarnovskii’s pseudovolume. The main result of this subsection is
a new formula for Kazarnovskii’s pseudovolume in integral geometric
terms. The proof of this result is based on the classification of unitarily
invariant valuations (Theorem 2.1.1).

Now let us recall the definition of Kazarnovskii’s pseudovolume fol-
lowing [30], [31]. Let C" be Hermitian space with the Hermitian scalar
product (-,-). For a convex compact set K € IC(C") let us denote its
supporting functional

hi(z) = sup(z,y).
yeK

For a set K € IC(C™) such that its supporting functional hg is smooth
on C" — {0} Kazarnovskii’s pseudovolume P is defined as follows:

P(K) := /D (dd°h)",

where D denotes the unit Euclidean ball on C*, and d° = I"'odo I for
our complex structure I.
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Proposition 3.3.1. Kazarnovskii’s pseudovolume P extends by
continuity in the Hausdorff metric to all K(C™). Then P is unitar-
ily invariant translation invariant continuous valuation homogeneous of
degree n.

Proof. The first part of the proposition (the continuity) is a stan-
dard fact from the theory of plurisubharmonic functions originally due
to Chern-Levine-Nirenberg [14] (see also [30], [31]). The unitary in-
variance, translation invariance, and the homogeneity of degree n are
obvious. The only thing which remains to prove is that P is a valuation.

Let A be a convex polytope. It was shown by Kazarnovskii [30] that

P(A) = & 3 F(F)y(F)vol, .
F

where k is a normalizing constant, the sum runs over all n-dimensional
faces F' of A, v(F') is the measure of the exterior angle of A at F,
vol,, F' denotes the (n-dimensional) volume of the face F, and f(F) is
defined as follows. Let Dp denote the unit ball in the linear subspace
parallel to the face F'. Then f(F) = vol(Dp + I - Dp). It is easy to see
from the above formula that P restricted to the class of convex compact
polytopes is a valuation, namely if A1, A, A1 U As are convex compact
polytopes then

P(A1 U Ag) = P(Al) + P(AQ) — P(A1 N Ag)

Then it is easy to see that the continuity of P and the valuation property
on the subclass of polytopes imply that P is a weak valuation on (C")
(this means that for any real hyperplane H and any K € K(C") one
has P(K)=P(KNH")+ P(KNH")— P(KNH) where H" and H~
denote the half-spaces). However it was shown by Groemer [23] that
every continuous weak valuation is valuation (in the usual sense). q.e.d.

The main result of this subsection is as follows.

Theorem 3.3.2.
P = E a1 Cp 1,
n/2<i<n

where aq € R are certain constants depending only on n, and C,,; are
valuations defined in the previous section.

Remark. It would be interesting to compute explicitly the constant
Q.
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Proof. The proof follows immediately from Proposition 3.3.1 and

Theorem 2.1.1. q.e.d.
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